Appendix A

Configuring the PC for UW DigiScope
Danial J. Neebel

This appendix provides the steps necessary to set up the various hardware systems
that are supported by UW DigiScope. DigiScope can interface to three different
types of devices: (1) the Real Time Devices ADA2100 analog and digital I/O inter-
face card that is installed internally in the IBM PC or compatibie, (2) an external
single board computer with serial RS232 communications (Motorola
S68HCH1EVBU Student Design Kit and MCM68HC11EVB Evaluation Kit), and
(3) a virtual I/O device (data files). When you install UW DigiScope with the
INSTALL.EXE program, you identify which physical devices are available in your
system. This selection can be changed later if you add a conversion device.

Figure A.1 shows the three different devices and the capabilities of each. A
sampling rate of approximately 500 samples per second (sps) can be achieved with
a 12-MHz 80286-based IBM PC/AT compatible. The maximum sampling rate of a
slower 8088-based IBM PC or compatible running at 4.77 MHz is approximately
250 sps. Thus, depending on your driving habits, mileage may vary.

Internal device External device Virtual /O
Ttem (ADA 2100) (Motorola EVBU) device

Sampling rate (sps) 1 to 500 31 0 500 1 to 500
Analog input range (V) ~5 to +5 Oto+5 N/A
Number of analog inputs 8 4 20
Number of analog outputs 2 none none
Analog output range (V) —10 to +10 N/A N/A
Number of digital inputs 4 3 none
Number of digital outputs 4 8 none

Figure A.1 Comparison of the three types of devices,
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An important step in installing any of the three devices in your system is running
the INSTALL program. INSTALL sets up all the software for DigiScope. If the Real
Time Devices ADA2100 is installed in the system, you should place a call to
DACINIT,COM in the AUTOEXEC.BAT. DACINIT,.COM resets the ADA2100 timer so
that the timer does not cause interrupts. The documentation with the ADA2100
explains why it is necessary to do this,

In the following three sections, we provide the steps necessary to get a PC sys-
tem ready for Data Acquisition using DigiScope. First we cover configuring and
installing the ADA2100. Next we present the steps to connect the Motorola EVBU
and EVB to a PC using RS232 communications. Finally, a few pointers are pre-
sented for setting up a good system to perform Virtual Data Acquisition. Before
discussing any of these hardware setups, it is important to know how to organize
the work area correctly to do the job right and safely. Read through the information
in the foilowing box.

Warning: Preparing a Work Area

Safety first. Unplug ali devices that you are working on,
Never remove the case of any device without making
sure that the device is unplugged. This will help protect
you as well as your equipment.

Installing and configuring your system for either the
ADAZ2100 or the Motorola EVBU will require you to
handle circuit boards containing delicate integrated cir-
cuits (ICs). Proper care should be taken to limit the like-
lihood of any device becoming damaged. Start with a
clear work area. Items such as an antistatic mat and
wristband can help limit static electricity. If you do not
have these items then always make sure you have
grounded yourself before touching any ICs or circuit
boards. This will help reduce the amount of static elec-
tricity in your body.

Many of the ICs on the ADA2100 and the EVBU are
CMOS technology. Even a small amount of static elec-
tricity can damage a CMOS part permanently. The part
may not show any signs of damage but it will fail to op-
erate properly.
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A.1 INSTALLING THE REAL TIME DEVICES ADA2100 IN AN IBM PC

Installing the Real Time Devices ADA2100 interface card in an IBM PC is a three-
step process. Each step must be taken with great care. The first step is to configure
the ADA2100. Next is the physical installation of the ADA2100 into the bus of the
IBM PC. The final step is to set up the Conr1G.wDs file. This is done automatically
by the INSTALL.EXE program and can be changed by running ADINSTAL . EXE.

A.1.1 Configuration of the ADA2100

DigiScope makes some assumptions about how the ADA2100 is configured.
Figure A.2 gives the jumper and switch settings for the device. It is also important
to check the rest of the internal cards in the system to determine if the ADA2100
settings will conflict with devices already installed in your system. The settings for
the ADA2100 are flexible enough that this should not be a problem. ADA2100
interface card

Jumper/Switch Function Required settings
P2 Base I/O address As defined by conFIG.wWDS
51 Analog input signal type Pos 1, 2, 3 UP and Pos 4 down
P3 PIT I/O header connector Chain the timers together; see

text below

P5 PIT interrupt header As defined by conFIG.wns
P6 EOC monitor header PA7 '
P7 EOC interrupt header EQC not connected to any IRQ |
P9 A/D converter voltage v _
P10 ID/A converter voltage Both set to + ~ B

Figure A.2 RTD ADA2100 jumper configurations. ATA2100 interface card

The Base I/0O Address (P2) must be set to the value defined during installation of
the software. The analog input signal type (S1) should be set so that there are eight
single-ended channels with + polarity. The PIT I/O Header (P3) connector should
be set so that OUTO is connected to CLK1, OUT1 is connected to CLK2, and
OUT2 can be connected to CO2 or ~CO2. The EGO, EG1, and EG? lines should be
connected to +5 V. The PIT interrupt header, P5, must be configured so that QUT?2
is connected to the IRQ line defined during installation. The EOC monitor header,
P6, should be set to PA7. The EOC interrupt header, P7, must be configurcd so that
EOC is not connected to any interrupt. The A/D converter voltage range, P9,
should be set to 10 V. Finally, the D/A converter output voltage range, P10, should
have AOUTI1 and AOUT2 both connected to =,
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A.1.2 Installing the ADA2100

In this section we do not give step-by-step instructions for removing the cover and
installing a card. We assume that the reader is familiar enough with an IBM PC to
be able to perform these tasks. If not, your system manual should give a good
explanation of how to install an IO card. In this section we give some indications
of things to look out for. It is important to make sure that no other cards conflict
with the settings on the ADA2100. The first of these is the Base I/0 address. Make
sure that no other card in the system is configured to use the addresses in the range
Base /O Address to Base I/O Address +0x17, If, for example, the Base I/O
Address of the ADA2100 is 0x240, then there should be no other cards using
addresses between 0x240 and 0x257. These addresses must be dedicated to the
ADA2100. Also make sure no other card is using the IRQ line set on P5, the PIT
Interrupt Header.

A.1.3 Installing ADA2100 power-up initialization

The auToEXEC.BAT file must be modified to execute DACINIT.coM. This can be
done with almost any text editor. DACINIT.coM will set the 82C54 timer on the
ADA2100 to a known state. The 82C54 timer does not automatically reset to a
known state on power up. This makes it possible for the 82C54 to power up in a
mode that will interrupt the system if the system does not disable interrupts. The
system boot should disable this interrupt and set the interrupt vector to a “dummy”
interrupt. If for some reason the system does not perform these operations, prob-
lems could occur. By running pAcCINIT .coM the 82C54 will not cause an interrupt.
Also, DigiScope will disable the 8254 on exit. If DigiScope is not allowed to exit
properly (Control Break is used), then the timer may still be running and causing
interrupts to occur.

A.1.4 Connecting to the ADA2100

%1

Figure A.3 shows the connection points for the inputs and outputs. The
pins are the ground lines. All the ground lines are the same on the ADA2100,

signal

Signal + Signal pins - Signal pins
Analog input channels 1 to 8 1108 21 to 28
Analog output channel 1, 2 10, i1 30, 31
Digital inputs 0 to 3 36, 16, 35, 15 37
Digital outputs 0 to 3 34,14, 33,13 37

Figure A.3 Signal connections for the ADA2100.
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Thus, if several channels share the same ground, only one ground lead need be
connected to the ADA2100. The analog inputs are configured as eight single ended
+ polarity channels. Do not exceed the input voltage range of £5 V. Digital signals
are to/from an 82C55 directly. Do not exceed the O to +5 V level of the 82C55.
Aiso, a CMOS device like the 82C55 cannot drive a large amount of current. We
recommend using a noninverting buffer such as the 74LS244 to protect the 82C55.
See Appendix C of the ADA2100 User’s Manua! for more information on the in-
puts and outputs of the 82C55.

A.2 CONFIGURING THE MOTOROLA 68HC11EVBU

The Motorola EVBU Student Design Kit was chosen as an inexpensive data acqui-
sition and control unit. This device was chosen because of its availability and low
cost. At the time of this printing, Motorola is selling this kit for $68.11. This price
is not likely to change. The EVBU is designed to emulate 2 Motorola 68HC11. The
processor used in the EVBU has 8 channels of 8-bit A/D, an RS232 Serial
Communications Interface, and 24 bits of digital I/0. As implemented in
DigiScope, the EVBU has 4 channels of A/D (0 to +5 V). The capability exists for
8 digital inputs and 8 digital outputs (0 to +5 V).

Connecting the EVBU to a host computer is straightforward. All that is required
is a cable and a +5-V dc power supply. The +5-V supply can be replaced by a bat-
tery. Instructions for using a battery to power the EVBU are included with the kit.

The EVBU does not come with a cable, but a good explanation of how to make a
cable to connect the EVBU to the IBM PC is included with the kit. We offer a dif-
ferent cable design. Since our software does not require hardware handshaking, a
cable with only three wires and some jumpers can be constructed. The jumpers are
to ensure proper operation of PC serial communication cards which expect hard-
ware handshaking. Figure A.4 shows cable designs for both 25-pin and 9-pin PC
connectors.

A.2.1 Configuration of the EVBU

The initial configuration is shown in Figure A.S5. Some minor changes will be made
later after some setup of the program memory in the EVBU. All of these settings
are defaults (or can be) except for J2 and J4. J2 need not be removed but a jumper
is needed across J4 to put the 68HCI11 into bootstrap mode. J2 is used by the
BUFFALO monitor to determine if the monitor should be executed or if the
processor should jump to the EEPRGOM at location 0xB600. Simply remove J2 and
place it across J4.

Where the words instalied or removed are used, there is a physical jumper that
must be handled. Where the words shorted or opened are used, there is no physical
jumper supplied but there may be a cut-trace short located on the printed circuit
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board solder side (bottom). It is not necessary to cut any traces on the circuit board.
In fact, the only jumpers that need be changed are J2 and 14,

BM PC 68HC11EVBU
25-pin 25-pin
connector connector
TxD {2) {2) TxD
RxD (3) (3) RxD
8G (7 (7} SG

RTS (4) D
et —rerareer} —
B | 75 7
EVBU
DSR (8) Jumpers
DCD (8)
DTR {20)
(a)
1BM PC 6BHC1iEVBU
9-pin 25-pin
connector connactor
TxD (3) (2) TxD
RxD (2) (3) BxD
SG (5) (7} §G
RTS (7}
B -———
;E’M PC CTS(8) D To
EVBU
DSR (8) Jumpers
DCD {1}
DTR (4)
{3)]

Figure A.4 Cable designs for connecting a PC to the 68HC11EVBU board. (a) 25-pin PC con-
nector. (b) 9-pin PC connecior.
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Jumper Function Required settings
n Input power select header Set as required for supply type
I2 Program execution select Must be moved to I3
J3,]4 MCU mode select header Must both be installed
15,6 MCU clock reconfiguration Must both be open
17 Trace enable header Can be installed or removed
18,39 SCI reconfiguration Both shorted
J10,11,12,13 SPI reconfiguration headers Can be installed or removed
J14 Real time clock INT* header | Must be open
J15 TxD reconfiguration header Must be shorted
J5 Terminal baud rate select Across pins 11 and 12
J6 Host port Rx signal disable Can be installed or removed

Fipure A.5 Motorola EVBU jumper configurations

A.2.2 Connecting the IBM PC to the EVBU

You will need to provide a cable as described in the Motorola EVBU User’s
Manual. The Digiscope program checks the file CONF1G.wDS to determine the se-
rial port used to communicate with the EVBU. The default is serial port configured
as COMI1. You should run the ADINSTAL.EXE program to create CONFIG.WDS if
you have not done so already.

A.2.3 Installing EDAC 68HC11 program into the EVBU

The files EDAC.S19 and EDAC.ASM are on the disk that you received with this
textbook. EDAC,ASM is the source code for the program that will reside on the
EVBU and communicate with DigiScope. EDAC.S19 contains the hex code for
EDAC.ASM. EDAC. $19 is in Motorola S-record format, A good description of the S-
record file format can be found in Appendix A of the EVBU manual.

Included with the student project kit is a software development utility called
pcBugll, pcBugll can be used to develop software for the 68HC11, pcBugll can
be used to download programs from a PC to the 68HC11 RAM, EPROM or
EEPROM using the 68HC11 bootstrap mode. A macro called Loap.Mcr for
pcBugll has been provided with DigiScope to allow simple programming of the
68HC11 EEPROM with Epac.819, After loading EDAC.S19 into the EEPROM of
the 68HC11, it is necessary to use pcBugl1 to start the EDAC program running on
the 68HCI11.

If the above is not workable, then the monitor may be programmed into the
EPROM using a 12 V power supply and a 100 Q resistor. With the monitor pro-
grammed into the EPROM, J2 may be configured such that the processor will start
executing the code in EEPROM after reset. This means that the reset switch need
only be pushed instead of rerunning pcBug11.
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Importanst: Starting EDAC

Each time the EVBU is reset it is necessary to use
pcBugll to restari the EpAC program. The command to do
this is:

PCBUGI11 -E port=N macro=go.

Where N is the number of the COM port that the EVBU
is connected to. N must be either 1, 2, 3, or 4. Also the
following files must be in the current directory:

PCBUGI1.EXE, TALKE.X0O0, TALKE.BOO, and GO.MCR.
All these files except for GO.MCR are included on the

peBugll disk you received with the EVBU. GO.MCR is
included on your DigiScope disk.

A.2.4 Connecting signals to the EVBU

Figure A.6 shows the pin numbers for connecting analog and digital signals to the
Motorola EVBU. Note that analog input channels 1 to 4 are connected to port E
bits 4 through 7.

Signal + Signal pins - Signal pins
Analog input channels I to 4 44, 46, 48, 50 1
Digital inputs 0 to 7 9-16 1
Digitai outputs O to 7 42,41, 40, 39, 38, 1
37,36, 35

Figure A.6 Signal connections for the Motorola EVBU.

Although it is not absolutely necessary, we recommend to those using an EVBU
for data acquisition and control to add some protection to the inputs and outputs.
CMOS devices such as the 68HC11 are very sensitive to voltages outside the range
of 0 to +5 V dc and are not able to sink or source a large amount of current.

Protecting analog inputs

Figure A.7 gives an example of a simple protection circuit for analog inputs. To
keep the input voltage from rising above +5 V or dropping below 0 V, we have
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suggested clamping dicdes. Point A will not go below -0.7 V or above +5.7 V.
This is enough to protect the 68HC11. Between the clamping diodes and the input
on the IC, a current limiting resistor is used. A value of 10 k€ will limit the current
without changing the input impedance too much. Finally, a 0.1 pF ceramic
capacitor is placed from the input to ground. This capacitor will help dampen the
effects of any high-frequency noise that may be present.

+5V
External EVB
signal 1N914 connector

D "/b%l >

1N914
I 0.1 pF
. r

Figure A7 Example of a simple protection circuit for a Motorola EVBU analog input.

Protecting digital inputs and outputs

Digital inputs and outputs are much easier to protect. A noninverting buffer can be
placed between the outside world and the microcontroller. If an input or output is
subjected to a damaging voltage, the buffer will be damaged and not the microcon-
troller. Also, a buffer made of Low Power Schottky TTL (LSTTL) technology is
more resistant to out-of-range voltages. A 74L5244 works very well as a buffer.
There are 8 buffers in a single package. Only one 74L.5244 is required for each of
the input and output banks.

A.3 CONFIGURING THE MOTQOROLA 68HC11EVB

Setting up the Motorola EVB Evaluation Kit is much the same as setting up the
system with the EVBU Student Project Kit. The EVB is also designed to emulate a
Motorola 68HC11.

There are different jumpers to configure on the EVB since this is a different cir-
cuit board. The software setup for the EVB is similar to the software setup for the
EVBU. The major difference is that a monitor program is already programmed into
an external EPROM on the EVB. There is no need to program the intemal EPROM
of the 68HC11. The monitor is then used to program the EEPROM.



304 Biomedical Digital Signal Processing

A.3.1 Setting up the EVB

There are two steps to configuring the EVB. The first is setting jumpers and build-
ing and connecting the RS232 cable. The second step is to connect the power sup-
plies to the EVB. The EVB requires +5, +12, and -12 V supplies. The jumpers on
the EVB should be configured as shown in Figure A.8. All of these settings are de-
faults (or can be). J4 will need to be changed to EEPROM after EEPROM has been
programmed with EDAC. $19. This jumper is used by the BUFFALO monitor to de-
termine if the monitor should be executed or if the processor should jump to the
EEPROM at location 0xB600. Initially the jumper should be in position TBD to
indicate that the program in the EPROM should be executed.

Jumper Function Required settings
Il Reset select header Can be installed or removed
2 Clock select header Across pins 2 and 3
13 RAM select header Can be installed or removed
J4 Prograin execution select Must set to EPROM initially
J5 Terminal baud rate select Across pins 11 and 12
J6 Host port Rx signal disable Can be installed or removed

Figure A.8 Motorola EVB jumper configurations.

A.3.2 Installing EDAC 68HC11 program into the EVB

The files EDAC.S19 and EDAC.ASM are on the disk you received with this textbook.
EDAC .ASM is the source code for the program that will reside on the EVBU and
communicate with Digiscope. EDAC.$19 contains the hex code for EDAC.ASM.
EDAC.S19 is in Motorola S-record format, A good description of the S-record file
format can be found in Appendix A of the EVBU manual.

Included with the student project kit is a software development utility called
pcBugll. peBugl1 can be used to develop software for the 68HC11. pcBugll can be
used to download programs from a PC to the 68HC11 RAM or EPROM using the
68HC11 bootstrap mode. A macro called LOAD.MCR for pcBugll has been
provided with Digiscope to allow simple programming of the 68HC11 EEPROM
with EDAC.S19. After loading EDAC.S19 into the EEPROM of the 68HCI11 it is
necessary to use pebugll {o start the EDAC program running on the 68HC11.

A.3.3 Connecting the IBM PC to the EVB

You will need to provide a cable as described in the Motorola EVB User's Manual.
The DigiScope program checks the file CONFIG.WDS to determine the serial port
used to communicate with the EVB, The default is serial port configured as COMI.
You should run the ADINSTAL.EXE program to create CONFIG.wD$ if you have not
done so already.
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A.3.4 Connecting signals to the EVB

See section A.2.4 for a description of how to connect signals to the EVB, The same
basic principles apply for protecting analog inputs and digital output and digital
inputs. Figure A.9 shows the pin numbers for connecting analog and digital signals
to the Motorola EVB.

Signal + Signal pins — Signal pins
Analog input channels 1 10 8 43, 45, 47, 49, 44, 1
46, 48, 50
Digital inputs O to 7 9-16 1
Digital outputs O to 7 42, 41, 40, 39, 38, 1
37,36,35

Figure A.9 Signal connections for the Motorola EVB.
A.4 VIRTUAL INPUT/QUTPUT DEVICE (DATA FILES)

Although it may seem a bit strange to talk about hardware configuration for a
virtual device, this section gives you some indication of how a PC should be set up
to run a virtual I/O device. The minimum requirements are a PC with 640 kbytes of
memory, VGA or Hercules monochrome graphics, and a single floppy drive. For
best performance, we strongly recommend using the program with a hard disk
drive. If DigiScope must read from a floppy disk every time it reads a sample point
then “real-time data acquisition” will not look very real.

A.5 PUTTING A HEADER ON A BINARY FILE: ADDHEAD

Files created by DigiScope have a unique structure. You can view information in a
file header with the UW DigiScope stat (U) s command. A special program is also
provided for creating file headers.

If you have a data file that contains 16-bit integers in strictly binary format (e.g.,
C-language 16-bit integers), you can use ADDHEAD to put a header on the file.
ADDHEAD will prompt the user for the information to be placed in the header of the
file. If the user does not enter any information for a field, AbDHEAD will use the de-
fault. The defaults for each field are printed with the prompt in parenthesis. After
all information has been entered, ADDHEAD reads the binary fiie and writes the
header and data to a new file called filename.dat.
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Appendix B

Data Acquisition and Control Routines
Danial J. Neebel

This appendix describes the routines that can be used to perform data acquisition
and control provided in paceac.L1s. The routines in pACPAC were developed for
two purposes. The first was for use in UW DigiScope. The second was to provide
simple software interfaces to the signal conversion devices for use by other pro-
grams, DACPAC . LIB and the required headers are included on the floppy disk you
received with this text. The DACPAC routines perform analog signal acquisition,
digital signal acquisition, analog signal output, digital signal output, and timing.

The pACPAC routines provide an interface to three different devices. These three
devices are an Analog and Digital I/O interface card from Real Time Devices that
is installed inside the IBM PC or compatible, an external single board computer
with RS232 communications {Motorola S68HC11EVBU Student Project Kit), and
a virtual I/O device (data files).

There are some similarities between the three different devices. All device han-
dling is done with four basic operations. These are OPEN, GET, PUT, and CLOSE.
OPEN initializes the device. GET retrieves a piece of data from the device. PUT gives
the device a picce of data to output. CLOSE terminates all operations being per-
formed on or by the device, including closing a file, disabling interrupts, and re-
moving communication links.

There are five sections in this appendix. In the first section we present the data
structures used in DACPAC.LIB. The next section describes the top-level routines
used to call the routines specific to each device. The following three sections dis-
cuss the routines provided in paceac. The descriptions of the routines for handling
devices are divided up into subsections for each type of routine. Along with the
four types above, we have added digital input and digital output as two special
types of GET and PuT routines. Each subsection describes in detail what data are re-
quired by the routine and what data are set by the routine,

Before charging off into details, we give one simple waming. Always make sure
to close all devices that have been opened before exiting the program. This means
that the use of the C-library function exit () should be used with great care. A de-
vice left open after program exit could cause your PC to hang up.



JUO BILTCUIVal Ligitdl wiyhidl FRCoallly

B.1 DATA STRUCTURES

Here are the important data structures used by the routines described in this sec-
tion. The most important is the Headar data structure. This structure contains all
the information about the data that has been or will be gathered from a device.

The title, creator, source, and type are all strictly character strings to be used as
the programmer sees fit. The package routines do not use these fields. When
opening any of the devices supported by DACPAC, the user must be careful to initial-
ize some parts of the Header data structure passed to the OPEN routine and note also
what parts of the data structure are initialized by the opEN routine. Figure B.1
shows the data structures used by the data acquisition routines in DACPAC.

typedef short DATATYPE; /* data type will be 16 bit integer */
typedef enum {ECG,EMG,EEG,CV,RESP,EKG,ABC,ERRCR} chantype_t:

typedef struct ChannelRecord |{
chantype t type;

float offset;
float gaing

} CHANTYPE;

typedef struct HeaderRecord f{
char title(80]; /* title to be used for display */
char filename[40]; /* filepame containing data */
FILE *fd; /* file pointer returned by fADopen */
char creator{80]; /* name of person who gathered data */
char source[80]; /* name of A/D card or other device */
char typei80]; /* i.e. 12-lead ECG */
float volthigh; /* High limit of input voltage */
float wvoltlow; /* Low limit of input voltage */
int stepsize; /* step size used by data compress. */
char compression; /* Data compression type */
int rate; /* positive integer */
int resolution; /* number between B and 16 */
int num_channels; /* number of channels (in array) */
int num_samples; /* number of samples */

CHANTYPE channel[20}; /* pointer to array of Channel info*/
DATATYFE *data; /* pointer to data buffer */
] DataHeader t;

Figure B,1 Data header and channel type data structures (from defns.h).

An important part of the Header structure is the array of cRANTYPE. This array of
structures contains all the information that is unigue to each channel. Part of the
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HANTYPE structure is an enumerated typed variable called type. This field is not
ed by any of the DACPAC routines. The typa field is provided for the user.

The defined type DATATYPE is more than just type short. The convention for all
riables of type DATATYPE is that they be 2°s complement 16-bit integers, a value
' 0 corresponds to 0 V. To calculate the voltage given from a value of DATATYPE,
ultiply the value by the resolution (i.e., bits/V) of the data from device being
ad. To calculate the number of bits/V, divide the voltage range by 2 raised to the
ywer of the resolution. The voltage range is found by subtracting Header-
voltlow from Header->volthigh. The resolution is taken from Header-
rasolution.

.2 TOP-LEVEL DEVICE ROUTINES

\CPAC contains routines that call specified device handlers. These routines are
cluded in pac.c. The header file that contains the prototypes for the routines is
nc.H. The prototypes are shown in Figure B.2. Examples of the calling
mventions for each type of device are given in Figure B.3. For determining what
lues to send these routines, look at the section corresponding to the device you
e using. The top-level routine PUT () calls £ADput_buffer () with a size of one.

char OPEN (DataHeader_t *Header, char *dir, int device};

char CLOSE (DataHeader t *Header, int device);

char GET (DataHeader t *Header, DATATYPE *data, int device);
char PUT(DataHeader_ t *Header, DATATYPE *data,int channel, int
device) ;.

Figure B.2 Prototypes for the top level routines (from Dac . H).
3 INTERNAL I/O DEVICE (RTD ADA2100)

he RTD (Real Time Devices) ADA2100 can perform more /O functions than the
her two devices described in this appendix. Using the routines below, the
DAZ2100 is capable of reading eight single-ended analog inputs, driving two
ialog outputs ranging from —10 to +10 V, reading four digital inputs, and driving
ur digital outputs. The digital I/O uses standard TTL levels ranging from 0 to
y V
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#define VIRTUAL 1
$define EXTERNAL 2
#define INTERNAL 3

/* calling conventions for Internal device */
OPEN (&Header, "", INTERNAL});

CLOSE (4Header, INTERNAL);

GET (&Header, &data, INTERNAL);

/* calling conventicns for External device */
OPEN (&Header, "r", EXTERNAL);

CLOSE {&Header, EXTERNAL) ;

GET {&Header, &data, EXTERNAL});

/* calling conventions for Virtual device */

OPEN {(&Header, "rt", VIRTUAL};

CLOSE (&Header, VIRTUAL):;
GET (&Header, &data, VIRTUAL);

Figure B,3 Calling conventions for the three devices.

See Appendix A for a description of how to configure the ADA2100. So:
items such as configuring for digital input and output are done via the software
pacpAc, Figure B.4 shows the routines provided to perform the above functic
and the calling convention for each. The prototypes for all the routines shown
the figure are in IDAC.RH. All routines return a value of 1 if the operation
successful and O if the operation is unsuccessful. Some routines will always
successful and will always return a value of 1.

char Iopen{PataHeader_t *Header};
char Iclose(DataHeader t *Header);
char TIget (DATATYPE *data);

Figure B.4 Internal card calling conventions (from IDAC. H).

B.3.1 Opening the device: Iopen()

The 1open () routine initializes the ADA2100 to perform digital input and out;
and analog input at the given sample rate. The timer is set to provide interrupts
the given sample rate. The interrupt vector is set to point to a small routine that s
a flag, The flag is checked by Iget(}.

Figure B.5 shows the how the Header data structure is used and what eleme
of the structure must be initialized and what elements are initialized by Iopen
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Any elements not listed are not initialized or used by Iopen () and so can be used
at the discretion of the calling routine.

The tollowing 1tems must be intialized before the device 15 opened.

Header->rate
Header->num_channels

The following items are initialized by the lopen(); routine.

Header->volthigh = 5.0;
Header->voltlow = -5.0;

Header->resolution = 12; )

if (channels > 7) channels = 7; /* should fix this sometime */
Header->num_channels = channels; ’
Header->num_samples = 0;

for (i=0;i<Header->num_channels;i++} {
ChanOffset {Header,i) = 0.0;
ChanGain{Header,i) = 1.0;

Figure B.S Iopen() routine description.

B.3.2 Closing the device: Iclose()

The Tclose{) routine stops the timer on the ADA2100 and resets the interrupt
vector to the value set before Topen ()} was called. Iclose () does not modify nor
does it require any elements of the Header data structure. Header is passed into
Iclosae () only for commonality. .

B.3.3 Taking an analog input reading: Iget()

The Iget () routine checks to see if the flag has been set by the timer interrupt
routine, If the flag has been set, Iget () reads the channels requested by Topan(),
puts the data from those channels in an array of DATATYPE pointed to by data and
returns a 1. If the flag has not been set , 1gat () returns a 0. If a rate of O is se-
lected, then 1get () will always read a value into data and return a 1.

B.4 EXTERNAL I/O DEVICE (MOTOROLA 68HC11EVBU)

The routines that interface to either of the Motorola devices do so by performing
serial communications on an RS232 link. Both the EVBU and EVB use the same
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interface. The routines provided in DACPAC are given in Figure B.6. These are
similar to the routines provided for the ADA2100. There are two major differences.
Although it is not absolutely necessary, we recommend to those using an EVBU
for data acquisition and control that some protection be placed on the inputs and
outputs. See section A.2.4 for some examples of simple protection circuits.

char Eopen (DataHeader_t *Header, char *dir};
char Eclose (DataHeader_t *Header);
char Eget {DATATYPE *data};

Figure B.6 Edac calling conventions (from EDAC.&).

B.4.1 Opening the device: Eopen()

The Eopen () routine initializes the serial port and sends a soft reset command fol-
lowed by setup commands to the EVBU. These setup commands tell the software
running on the EVBU at what rate to sample the analog inputs and which inputs are
to be sampled. Since the EVBU can only communicate at a maximum of 9660
bits/s, it is necessary in some cases to buffer the data and send the block to the PC
when the PC has time to read the data. So a last item included in these commands
is whether real-time transfer or block transfer is to be used. To set the EVBU for
real-time transfer, call Eopen () with dir setto r. To set the EVBU for block
transfers, call Eopen () withdir settob.

Figure B.7 shows how the Reader data structure is used, what elements of the
structure must be initialized, and what elements are initialized by Eopen ().

The following Trems must be Initialized before the device 1s opened.

Header->rate
Header->num_channels

The following items are initialized by the Eopen(); routine.

Header->volthigh = 5.0;
Header->voltlow = -5,0;

Header->resolution = 8;
if {(channels > 8) channels = 8;
Header->num_channels = channels;
Header->num_samples = 0;

for (i=0;i<Header->num_channels;i++) {
ChanOffset (Header,i) = 0.0;
ChanGain (Header, i} = 1.0;

Figure B.7 topen routine description.




Data Acquisition and Control Routines 313

Any elements not listed are not initialized or used by Bopen () and so can be used
at the discretion of the calling routine.

If you do not wish to perform analog input, simply give Eopen () a sample rate
of 0, If this is done, no analog inputs will be read. In this case £qet () should not
be used. Eopen () assumes the caller does not want to perform analog input. Digital
input and output may still be performed.

B.4.2 Closing the device: Eclose()

The Eclosa () routine will stop all analog signal acquisition on the EVBU. The
EVBU will be given a soft reset command. This means that the EVBU will stop
reading analog inputs and performing digital I/O until Eopan () is called again and
the EVBU receives setup information again.

B.4.3 Taking an analog input reading: Eget()

The 2gat () routine checks to see if data has arrived from the EVBU, If data has
arrived without error, then the Eget {) puts the data from the channels in DATATYPE
variable pointed to by data and returns a 1. If no data has arrived from the EVBU,
Eget () returns a 0,

B.5 VIRTUAL IO DEVICE (DATA FILES)

Figure B.8 shows the calling conventions for each of the routines available to the
user. These routines were developed to serve two purposes. The first was to allow
anyone to do real-time data acquisition even if they do not have any data acquisi-
tion hardware. The second purpose was to allow the storage, labeling, and retrieval
of signals gathered using the above data acquisition routines. The routines de-
scribed here do not require any special hardware. If you have an IBM PC/XT/AT
or compatible with a floppy drive, 640 kbytes of RAM, and either a Hercules
monochrome or VGA color monitor, you should be able to run these routines.

char fADcpen{DataHeader t *Header, char *dir);

char fADclose(DataHeader t *Header);

int fADget_buffer(DataHeader_t *Header, int size,DATATYPE *buffer):;
char fADget (DataHeader t *Header, DATATYPE *signal);

int fADput buffer (DataFeader_t *Header, int size,DATATYPE *buffer);
void fADputfile(DataHeader t *Header);

void fADgetfile(DataHeader t *Header);

Figure B.8 £ap calling conventions (from £ap . 1),
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B.5.1 File structure

The file structure uses an ASCII text header to describe the data in the file. The
header is terminated by a single blank line. The data immediately follow this blank
line. The data are stored in the file in binary. Figure B.9 gives an example Header.
Note that for £aDopen () to operate properly, the field names must be exactly as
shown in Figure B.9. Even though the headers are stored in text format, the files
cannot be edited using a normal text editor since the data are stored in the files in
binary. Section A.5 shows how to use the program called ADDHEAD to add a header
to an existing file.

Title: ECG data from file ecgl(5
Creator: unknown

Source: wunknown

Type: ECG single channel
Volthigh: 12

Voltlow: =12

Step: O

Compress: N

Resolution: 12

Rate: 200

Channels: 1

Samples: 12000

Chan: 0 Gain 1.0000 Ofst 0.0000 Type ECG

Figure B.9 Example file header.

B.5.2 Opening the device: fADopen()

The £aDopen (} Toutine opens a file and initializes the timer to provide software
delays to simulate real-time data acquisition. If you do not wish to perform timed
analog input, simply call £ADopen () with dir set to r for read only. If timed input
is desired, then call £aDopen () with dir set to rt for read with timed input. If file
output is desired, then call £ADopen () with dir set to w for write only. When
opening a file for output, all elements of the Headerx structure must be set. When
opening a file for read only Reader->filename need be set. As shown in Figure
B.10, all other elements will be read in from the file. Function £ADopen () will only
open a file for reading (options r and rt) or writing (option w). This figure shows
how the Header data structure is used and what elements of the structure must be
initialized and what elements are initialized by £ADopen (). Any elements not listed
are not initialized or used by £ADopen () and so can be used at the discretion of the
calling routine.
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‘the following items must be Initialized before the device 1s opened.,
Header->filename;
The following items are initialized by the Iopen(); routine.

Header->title;
Header->creator;
Header->source;
Header->type:

Header->fd;
Header->stepsize;
Header->compression;
Header->rate;
.Header->resoclution;
Header->num_samples;
Header->volthigh;
Header->»voltlow;
Header~->compression; /* no compression */
Header->resolution;
Header->channels = channels;
Header->num_samples = 0;

for (i=0;i<Header->num channels;i++) {
ChanOffset (Header, i) ;
ChanGain (Header, i) ;
ChanType (Header, i) ;

Figure B.10 £apopen routine description,

B.5.3 Closing the device: fADclose()

The taDclese() routine performs two very important operations. First, the
obvious, it closes the file pointed to by Header->£d. Second, if £ADopen () was
called with dir pointing to t, £ADclose() will remove the timer routine from the
time-of-day interrupt line,

B.5.4 Taking an analog input reading: fADget(), fADget_buffer(), fADgetfile(}

The £apget {) routine checks the flag set by the interrupt service routine, If the
flag has been set, then f£ADget () reads one sample from each of the channels in
the file pointed to by Header->£d and returns a 1. The samples are then placed in
an array pointed to by data. It is the responsibility of the calling routine to allocate
enough space for the data. If the flag has not been set by the interrupt service
routine, then £anget () returns a 0.

If no timing is required and all of the data needs to read in for processing, then
fADgatfile() can be used. £ADgetfila () will open the file specified by Header-
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>£1laname, read the file header into the Beader data structure, and read all the
data into an array pointed to by Header->data. Note also that £apget£ile () will
allocate memory for the data pointed to by Header->data.

If the file is too large to read all at once or only some of the data is needed from
the file, then £ADget buffar() is very useful. £ADget_buffer () will read as
many samples as are requested by size. If successful, fAbget_buffer () retums the
number of samples read from the file. A sample is one reading on each channel.

B.5.5 Writing data to a file: fADput_buffer() and fADputfile()

For writing data out to a file, there are two routines—£ADput_buffer (), and
£aDput £ile (). The routines used for writing to a file do not use timing. There is
no £ADput {) to correspond with £ADgat () since calling £ADput_buffer () with a
buffer size of 1 will write one sample of each channel into the file pointed to by
Header->£d just as one would expect a routine called £aDput () to do. Remember
that a sample is one reading for each channel. The top-level routine PUT () calls
£aDput_buffer () with a size of one.

£ADputfile () makes storing the data to a file simple. £aDputfile () will open
the file name Header->filename for writing, write all header information to the
file, and write all data to the file and then close the file. fADputfile() does not
free the memory pointed to by Header->data.
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Appendix C

Data Acquisition and Control—Some Hints

Danial J. Neebel

In the previous two appendices we described how to set up the hardware to use
with UW DigiScope and how some of the routines in DACPAC can be used. Here we
provide some helpful hints on how to develop some of these routines and set up the
hardware to perform DAC. We are not describing everything that must be done.
We give the reader some hints and advice as to what to do and what not to do. We
will also give some good references for performing some of the operations needed
to do data acquisition and control with the IBM PC.

This appendix should give the reader some idea of how to go about setting up a
simple data acquisition and control system. It includes information on the basic el-
ements required to read analog and digital signals into a computer using the three
different types of devices presented in the previous appendix. The first type is an
internal device, An internal device is connected to and communicates with the PC
via the internal expansion bus. An I/O device can also be extemnal. An external de-
vice communicates with the PC via either a serial or parallel communication port.
The most common communication ports are RS232 (serial) and IEEE 488
(parallel). In this text, we discuss only RS232 communications since almost all
IBM PC architecture machines have an RS232 serial port available. The last type
of device is a virtual I/O device. DigiScope uses data files and a timer interrupt to
simulate analog data acquisition, These same file utilities are used to store and re-
trieve data gathered using internal and external analog input devices.

There are four basic operations involved in using an input/output device: Open
Device, Input Data, Output Data, and Close Device. Open Device will initialize the
device for the type of 1/O requested and set up any interrupts that may be needed to
perform exact timing. Input Data will determine if the data requested is available
and retrieve the data from the device. Output Data will give the device a piece of
data to output. Close Device will terminate all operations being performed by the
device and disable any interrupts set up by Open Device. In the discussions that
follow, we describe exactly what must be done to perform each of these operations
for each of the three devices presented. The last section gives helpful hints for
writing your own interface to be used with DigiScope.
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All programming for the PC is done in Turbo C. We refer the reader to the Turbo
C manuals for information on such things as serial communication routines and file

input/output.
C.1 INTERNAL /O DEVICE (RTD ADA2100)

This type of c.vice requires installation inside the chassis of the IBM PC. Figure
C.1 shows the connection of an ECG amplifier to an 1/O card. Note that no extra
hardware is required.
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Figure C.1 Internal card data acquisition and control system.

PC AT

C.1.1 Interfacing to an I/O card with Turbo C

Interfacing to a card installed in the PC is done using the library routines provided
in Turbo C that read and write from and to the I/O space of the processor. For 8-bit
1/0 operations, inportb() and outportb () are used for input and output respec-
tively. Functions inport () and outport () are used for 16-bit input and output.
The ADA2100 is an 8-bit I/O card so we have used inportb () and cutpertb (),
We refer the reader to the Turbo C Reference Guide for more information on these
routines. Figure C.2 shows examples of using inportb () and outportb() to set
up the 8259 interrupt controller. The 8259 is part of the PC system, but the opera-
tions of reading and writing using inportb() and cutportb() are the same as
reading and writing to a card.

C.1.2 Handling interrupts on the IBM PC with Turbo C

We discuss some of the basic operations required to properly set up interrupts
and—possibly more important—how to make sure that interrupts are disabled
when we do not want them to occur. Programming with interrupts is difficult be-
cause an interrupt can occur at any point in the execution of a program. We have
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limited control over when an interrupt can occur, An interrupt is used when an ex-
ternal event needs to stop whatever process is running and cause another process to
execute. There are many sources of interrupts. An interrupt can come from the
keyboard, a disk controller, a serial port, the time of day interrupt, or many other
sources. In this case we would like something to happen at very regular time inter-
vals.

Interfacing to the interrupt controller

The IBM PC has one Intel 8259 interrupt controller. The interrupt controller is lo-
cated at 0x20 and 0x21 in the 1/O space of the processor. Note that we use the C-
language convention for specifying hexadecimal (base 16) constants. The interrupt
controller is the device that tells the processor that an external process has re-
quested an interrupt. If interrupts are enabled, the processor will acknowledge the
interrupt. The interrupt controller will then tell the processor where to look for the
interrupt vector. The vector is the address of the interrupt service routine.

The 8259 interrupt controller has many capabilities, but we recommend that you
only change the interrupt mask register, IMR. For a more detailed description of
the 8259, see the Intel Microprocessor and Peripheral Handbook, Volume I, or
Eggbrecht (1983). The IMR is located at 0x21 in I/O space. The IBM PC/AT archi-
tecture uses two 8259 interrupt controllers. The master interrupt controller is lo-
cated at 0x21 and the slave is located at 0x70. The two interrupt controllers are
cascaded to provide 15 different interrupt levels. IRQ2 of the master interrupt con-
troller is connected to the slave.

When masking or unmasking an interrupt, it is very important to only change the
mask of the interrupt of interest. It is equally important to mask the interrupt after
use. Figure C.2 shows one method of unmasking an interrupt at the beginning of a
program and returning the mask to the original setting at the end of the program.

Interfacing to the operating system—interrupt handling

Aleng with unmasking the interrupt in the interrupt controller, we must also initial-
ize the interrupt vector to point to the proper interrupt handler. Turbo C provides
two routines that make this very easy. Before setting the interrupt vector to the new
interrupt handler, the current interrupt vector must be saved so that before the pro-
gram exists to the operating system, the interrupt vector can be retumned to the
original value,

An important item to remember when using interrupts on the PC is to always
return the system interrupt handler and interrupt vectors to the state they were in
when the program started. To do this we save the current IMR and interrupt vector
into two global variables and reset the IMR and interrupt vector to these values
upon termination of the program. Exiting without resetting the IMR and interrupt
vector could cause serious problems. If this event occurs for whatever reason, the
user should reboot the system.
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main (char *argv[], int argc)

{
disable () /* disables all interrupts */

Qldvector = getvect (10); /* set interrupt vector */
setvect (10, Itimer);

OldMask = inportb(0x21}); /* unmask IRQ 2 on 8258 */
mask = OldMask & OxFB:

outportb (0x21,mask);

enable () /* enables all interrupts */

/* code that can be interrupted by INTERRUPT 10 */

disable(}:

outportb (0x21, 0ldMask) ; /* return mask to original value */
setvect (10, OldVector); /* return interrupt vector to */
/* original wvalue */

enable () ;

Figure C.2 Setting the interrupt vector and interrupt mask register.

C.2 EXTERNAL IO DEVICE (MOTOROLA 68HCI11EYBU)

For an external input/output device, we have chosen the Motorola S68HC11EVBU
student project kit. This device was chosen because of its availability and low cost.
The drawback of using this device is the difficulty in setting it up. To turn the
EVBU into an I/O device, a 68HC11 assembly language program is needed to
communicate with the PC and perform the necessary input and output. Fortunately
we have done this part of the task for you. An example system is shown in Figure
C.3. Also, the EVBU is not a difficult device to program. The student evaluation
kit includes enough tools and documentation so that anyone who has experience
writing assembly language code should be able to program the EVBU.

An advantage of using this device is that all critical timing can be done by the
68HC11. This means we can avoid using interrupts on the PC altogether. However,
the 68HC11 has a time-based interrupt. Interrupts are a little easier to handle on a
microcontroller than on a PC; an operating system and disk drives and other items
make a PC more complicated.

In this section we give a short introduction to using serial communications with
Turbo C. Finally, we give an example of two routines, one written in Turbo C for
the PC and one in assembly language for the EVBU; they each perform a simple
communication sequence.
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Figure C.3 Motorcla EVBU data acquisition and control system.

C.2.1 Common operations

Here we briefly describe the operations needed to perform the basic operations of
OPEN, CLOSE, GET, andPUT.

#define COM1
#define COMZ
#define COM3
$define COM4
define SETTINGS (0xE0J0x03|0x00]0x00)

/* 9600 Bd 8 bits 1 stop no parity */

whrro

/* CPORT contains COM port is being used */
int CPORT=COM1;

/* initialize serial port */
bioscom{0, SETTINGS, CPORT);

/* read the status of serial port */
status = bioscom(3,0,CPORT);

/* read the input buffer of serial port */
port = bioscom(2,0,CPORT);

/* Send an ASCII @ out on serial port */
bioscom{l,'Q',CPORT) ;

Figure C.4 Use of the bicacom() Turbo C library routine,

Opening the device

An open device routine must initialize the RS232 serial port, establish a communi-
cation link with the EVBU, and initialize the EVBU for any timing and data taking
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that need to be performed. Initializing the serial port is easily done using the
bioscom () routine provided by Turbo C (see Figure C.4). In section C.3.3 we give
an example of how this is done. Figure C.5 shows the communication sequence
that takes place when the external device is opened.

- PC sends reset command “R” to EVBU for soft reset.

- EVBU gets “R” and jumps to reset vector. As part of reset, EVBU
sends “R” to PC to echo Reset command.

- PC sends channel mask “Cx” to EVBU. x is an 8-bit mask with 1’s
in positions corresponding to analog input channels to be read.

- EVBU echoes channel mask “Cx” and saves it,

- PC sends delay setting, “Dxxxx” to EVBU. xxxxX is in Hex and is
timer ticks of 68HC1l1 timer.

- EVBU echoes “Dxxxx” command and saves delay setting.

- PC sends go command “G” to EVBU.

|- _EVBU echoes “G” command and starts timer interrupts.

Figure C.5 Communication sequence for initializing EVBU for real-time data transfer.

Closing the device

A close device routine need only send a command to tell the EVBU to terminate all
data acquisition and stop sending data to the PC host.

Important: Starting EDAC

Each time the EVBU is reset it is necessary to use
pcBugll to restart the EDAC program. The command to do
this is:

PCBUG11 -E port=N macro=go.
Where N is the number of the COM port that the EVBU

is connected to. N must be either 1, 2, 3, or 4. Also the
following files must be in the current directory:

PCBUGI1L.EXE, TALKE.X0O, TALKE.BQO, and GOMCR.
All these files except for GO.MCR are included on the

peBugll disk you received with the EVBU. GO.MCR is
included on your DigiScope disk.
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nput data

\n input data routine must give the EVBU a request to read data and wait for a re-
ponse. Remember that the host should always limit the amount of time spent wait-
ng for a response so as not to hang the computer waiting for an event that will
ever occur.

Jutput data

\n output data routine must send the EVBU a command telling the EVBU to out-
ut a specified piece of data.

>.2.2 Serial communications using Turbo C

erial communication is accomplished via the bioscom() routine. Function
ioscom () is a multipurpose routine that can be used to initialize the serial port,
heck status, read the serial port, send a byte out on the serial port. The Turbo C
eference manual gives some very helpful examples of how to perform each of
nese operations, Figure C.6 shows some examples from the code developed for
1s text,

“send_command ("R") ; /* reset the EVBU */

* Tell EVBU which channels the host wants to read. */

* The EVBU will send this many bytes to the TERMINAL */
* at the sample rate */

for (i=0, mask=0;i<Header->num_channels;i++) |
mask |= 1 << i;

}
sprintf (buf, "C%X\r", mask) ;
send_command {buf} ;

/* calc delay betw. samples */

if (Header->rate != 0} {
delay = 2000000 / Header->rate;
} else {
delay = 0; /* 1if rate is 0 send 0 delay */
H
sprintf (buf, "D%X\r",delay); /* Tell EVBU delay */

send command (buf);

_send command ("G") ; /* Tell EVBU to start sampling */

Figure C.6 Turbo C code for the PC to execute the sequence in Figure C.5.
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C.2.3 A sample communication sequence and the code to execute it

Here we present the communication sequence used to open the EVBU device usec
by Eopen (). We have removed some of the error checking to make the code easie:
to understand. The sequence being executed is exactly the same as that performec
by Eopen () on the PC and EpAac.asM on the EVBU. The sequence is outlined ir
Figure C.5. The PC must provide the EVBU with sample rate and number o
channels, and indicate if block transfer mode or real time mode is to be used. The
code used to execute the sequence on the PC and EVBU is given in Figures C.¢
and C.7 respectively. The send_command () routine shown in Figure C.8 sends :
NULL-terminated string to the EVBU.

Note that a one-byte mask is sent to tell the EVBU which channels to read. Eact
bit position corresponds to an analog input channel. The bits and channels are
numbered 0-7. If bit 2 is the only bit set in the mask, then channel 2 will be the
only channel read.

LDAA $§'R' send signon character to host
JSR DATOUT

SETUP JSR DATIN
BRCLR FLAGS
RCVDAT SETUP wait for a character
JSR DATOUT echo to host for host's error

checking

CMPA D Check for delay
BNE SETUP1
JSR GETDELAY Read in the hex value and save
BRA SETUP

SETUP1 CMPA #'C’ Check for number of channels
BNE SETUPZ2
JSR GETCHAN Read in the hex value and save
BRA SETUP

SETUP3 CMPA #'G' Check for Start
BNE SETUP

* set up A/D converter and start interrupts

Figure C.7 Assembly language code for 68HCI11 to execute the sequence in Figure C.5.

C.3 VIRTUAL IO DEVICE (DATA FILES)

File I/O is a normal operation to most programmers. Here we show one method of
using files to simulate a physical 1/O device. The first task is to make file 1/O
operaticns look like operations involving a physical I/Q device. Next we need to
provide some type of timing operation so that input and output take place at a
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specific réte. Providing timing is the difficult part of simulating a physical device
with data files. To perform the timing operation of virtual analog input, your
system must have the time-of-day interrupt compatible with an IBM PC or PC/AT.
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Figure C.8 A microcomputer and hardware for virtual analog input.

C.3.1 Stealing the time of day interrupt

Figure C.9 shows how to steal the time-of-day interrupt. The old interrupt vector is
saved so that it can be restored and also so that the new timer interrupt routine can
call the interrupt service routine approximately 18.2 times/s. This keeps the time-
of-day clock running at a rate close to the correct rate. If this was not done the
time-of-day would be set to an unknown value after the program was finished us-
ing the interrupt. For more information about what types of things can be done by
stealing the time of day interrupt, see Bovens and Brysbaert (1990).

C.3.2 Initializing the 8253 for a specified sample rate

Figure C.10 shows a routine to set up the timer to a specified rate. The operations
required are to calculate the number of clock ticks required between samples and
then set up the timer. Timer setup requires setting TIMERO in mode 2 and writing
the least-significant byte then the most-significant byte to TIMERO. The timer con-
trol is located at 0x43 in I/O space and TIMERO is located at 0x40 in I/O space. The
8253 has three timers. TIMER1 is used for the speaker output and TIMER2 is used for
dynamic memory refresh. It is very important that both of these timers remain
undisturbed. We refer the reader to the Intel Microprocessor and Peripheral
Handbook, Volume II for more information on the Intel 8253.



e

I ISR Ulullﬂl Ulullﬂ.l rluhuaallly

#define TIMERO 0x40 /* I/0 mem locations for 8253 */
f#define TIMER_CTRL 0x43

void interrupt (*0ldTimer) {void); /* global to save old ISR */

disable (); /* disable interrupts */
0l1dTimer = getvect (0x08); /* save the old ISR*/

getvect (0x08, SuperTimer): /* set new ISR to our routine */
SetUpTimer (rate); /* initialize timer to rate */
enable(}; /* enable interrupts */

/*x**x% code that can be interrupted goes here *#ax+**a/

enable () ; /* enable interrupts */

disable(); /* disable interrupts */
setvect (0x08, OldTimer); /* restore ISR */

outportb {TIMER CTRL, 0x36); /* timer 0,mode 3, LSB and MSB */
outportb (TIMERD, 0x00);
outportb {TIMERG, 0x00);

Figure C.9 Code to steal the time-of-day interrupt (INT 8).

#define TIMER( 0x40 /* I/0 mem locations for 8253 */
#define TIMER CTRL 0x43 ?
#define TIMER_CLOCK (long) 1192755 /* Hz crystal for 8253 w
#define BIOS_TIC (double} 18.2 /* in ticks per second */

int old_timer_call;

void SetupTimer {frequency)
int frequency;

{

long divisor;
int data;

old timer call = (int) ({(double) frequency) / BIOS_TIC);
divisor = TIMER CLOCK / ((long) frequency};

outporth (TIMER_CTRL, 0x34):/* timer 0, mode 3, LSB and MSB */
data = (int} (divisor & OxFF);

ocutportb (TIMERO, data):

data = (int)} ((divisor >> 8) & OxFF):

cutportb (TIMERO, data);

Figure C.10 Code to set the 8253 TIMERO to for a specified sample rate,
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C.3.3 Writing an interrupt service routine in Turbo C

It is important that an ISR return the system to the original state the system was in
before the interrupt service routine was executed, This means that an ISR must
save the current state of the processor when the ISR was started. Fortunately,
Turbo C makes sure this is done if the routine is declared with “void interrupt.”

void interrupt SuperTimer ()

{
static int super_counter = 0;

TIME_OUT = TRUE;

if (++super_counter == old_timer call) -

{
0l1dTimer () ; /* execute old timer approx. 18,2 */
super_ counter = 0; /* times per seceond */

} else {

cutportb (0x20, 0x20}; /* interrupt acknowledge signal */
}
1

Figure C.11 Interrupt service routine to set flag and call real-time clock approximately 18.2
times/s.

Figure C.11 shows an ISR that could be used for virtual A/D in paceac.LIB. Note
that the SuperTimer () routine only sets a flag and updates the real-time clock. By
limiting the amount of work done by an ISR, we can eliminate some of the prob-
lems caused by using interrupts.

C.4 WRITING YOUR OWN INTERFACE SOFTWARE

One of the most common needs of users of the data acquisition software available
with DigiScope will be adding a new interface device. In this section, we give
some directions for adding an interface to a different internal card to DigiScope.

C.4.1 Writing the interface routines

Section C.2 gives some hints for one method of interfacing Turbo C code to an
internal card. Most I/O cards will be shipped with some interface routines and/or a
manual and examples for writing these routines. The trick to making the internal
card work with DigiScope will be to match the card interfaces to the interfaces to
DigiScope. Appendix B shows all of the function prototypes used in DigiScope for
interfacing to the various types of I/O devices. For example, if you wish to write an
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interface to an internal card, you will need to write the routines included in
IDAC,OBJ. A list of these functions is given in Figure B 4.

Examples of the code included in the module IDAC.08J. are given in Figures
C.12(a), C.12(b), and C.13. Figure C.12 shows the code used to open the device
and set up necessary timing and I/O functions. You should take note of the items in
the internal data structure Headar that are initialized.

/* Global Variables */

unsigned int BaseAddress = 200; /* base address for RTD card */

unsigned int IRQline = 3;

static char AD TIME CQUT;

statiec char DA_TIME_OUT;

static int OldMask:

static int NUM_CHANNELS; /* used to remember how many */
/* channels to read */

static char OPEN=NO;

static <char TIMED=NO;

/* RTD board addresses */

#define PORTA BaseAddress + 0

#define PORTB BaseAddress + 1

#define PORTC BaseAddress + 2

#define PORT CNTRL  BaseAddress + 3

tdefine soCl2 BaseAddress + 4

#define 50C8 BaseAddress + 5

#define AD MsSB BaseRddress + 4

tdefine AD_LSB BaseAddress + 5

#define DAl_LSB BaseAddress + 8

#define DAl_MSB BaseAddress + 9

#define DAZ_LSB BaseAddress + 0OxA

#define DA2 MSB BaseAddress + 0xB

#define UPDATE BaseAddress + 0xC

#define CLEAR_DA BaseAddress + 0x10

#define TIMER( BaseAddress + 0x14

#define TIMERL BaseAddress + 0x15

#define TIMERZ BaseAddress + 0x16

tdefine TIMER_CNTRL BaseAddress + 0x17

char Iopen (DataHeader t *Header)

{
int regist

er 1i,73,in,

out;

int delay, num channels;

char buf[2
int mask;

0):

Figure C.12(a) Beginning of routine to open internal card for analog 1/O.
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FALSE;
FALSE;

AD_TIME OUT
DA_TIME_OUT

Header->volthigh = 5.0; /* initialize header data structure */
Header->voltlow = -5.0;

Header->resclution = 12;

if (Header->num_channels > 8§)
Header->num_channels = 8;

NUM_CHANNELS = Header->num_channels;

Header->num_samples = 0;

Header->data = NULL;

/* initialize internal card */
/* PORT C low is input */
/* PORT C high is output */

outportb (PORT_CNTRL, 0x91) ;

/* set gain and offset for each channel during Iget routine */
/* type should be set by user */
/* for now the gain is always set to one */

for (i=0;i<Header->num_channels;i++} {
ChanOffset {Header,i) = 0.0;
ChanGain (Header, i} = 1.0;

}

if (!CheckTimer()) return(NO); /* This routine is used to */
/* check if the board is installed */

/* setup timing function */

if (Header->rate != 0) {
disable(}; /* only perform timing if rate is */
/* nonzero */
ISetupTimer (Header->rate); /* setup 8253 timer */
Oldvector = getvect (IRQnumber); /* set interrupt vector */

setvect (IRQnumber, Itimer};
/* unmask interrupt mask */
OldMask = inportb(0x21};
mask = OldMask & ~{l1 << IRQline) & OxFF;
outportb (0x21,mask) ;
enable (};
TIMED=YES;
} else { /* rate is zero => don't use timing */
TIMED=NO;

}

OPEN=YES;

return (YES) ;
] /* Topen{) */

Figure C.12(b) End of routine to open internal card for analog 1/O.
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char Iget (DATATYPE *data}

{
int msb, lsb, i;

if (!OPEN) {
DEVICE_NOT_OPEN () ;
return (NO) ;

}
if (AD_TIME _OUT {| !TIMED} {

for (i=0;i<NUM_CHANNELS;i++) {
/* read all channels requested */
/* for now the gain is tied to 1 */
outportb (PORTB, 0x00 | 1 }): /* select channel */
outportb (S0C12,0); /* start a conversion */
while (! {inportb(PORTA) & 0x80));
/* wait for conversion to end */
/* after EOC then read MSB and LSB */
msb = inportb(AD_MSB)*16; /* read in data from RTD card */
1sb = inportb(AC_LSB)/16:/* the card should be in +/- mode */
data{i) = msb + 1lsb - 2048;
}

AD_TIME_OUT = FALSE; /* Clear AD_TIME OUT flag */
return{YES);
} else (

return {NO} ;
}
} /* Iget */

Figure C.13 Routine to get analog input data from internal card.

C.4.2 Including the new interface in UW DigiScope

The file DACPAC. LIB contains all of the UW DigiScope data acquisition routines.
To replace the current interface for internal I/O card, you need only replace the
IDAC.0BJ module in bACPAC.LIB. To replace the external device and virtual de-
vice, replace the Epac, 0BJ and FAD. 0BJ modules respectively. You should include
all of the functions that are listed as included with those modules in Appendix B.
Failure to include all the functions will at the least cause a compiler error and at
worst a run-time error. If you do not wish to use a function, you may simply insert
a dummy function in its place. For additional details, see the README file on the
UW DigiScope disk.
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Appendix D

UW DigiScope User’s Manual
Willis J. Tompkins and Annie Foong

UW DigiScope is a program that gives the user a range of basic functions typical of
a digital oscilloscope. Included are such features as data acquisition and storage,
sensitivity adjustment controls, and measurement of waveforms. More important,
this program is also a digital signal processing package with a comprehensive set
of built-in functions that include the FFT and filter design tools. For filter design,
pole-zero plots assist the user in the design process. A set of special advanced
functions is also included for QRS detection, signal compression, and waveform
generation. Here we concentrate on acquainting you with the general functions of
UW DigiScope and its basic commands. Before you can use UW DigiScope, you
need to install it on your hard disk drive using the INSTALL program. See the di-
rections on the DigiScope floppy disk. Also be sure to read the README . poc file on
the disk for additional information about DigiScope that is not included in this
book.

D.1 GETTING AROUND IN UW DIGISCOPE

To run the program, go to the p1GscorE directory and type ScopE. Throughout
this appendix, the words scopg, DigiScope, and UW DigiScope are used inter-
changeably.

D.1.1 Main Display Screen

Figure D.1 shows the main display screen of scoPE. There is a menu on the left of
the screen and a command line window at the bottom. There are two display chan-
nels. The one with the dashed box around it is called the active channel, which can
be selected with the {A)ctive ch menu command. Operations generally manipu-
late the data in the active channel. The screen shows an ECG read from a disk file
displayed in the top channel and the results of processing the ECG with a deriva-
tive algorithm in the bottom (i.e., active) channel.

332
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Maneuvering in SCOPE is accomplished through the use of menus. The up and
DOWN ARROWS move the selection box up and down a menu list. Hitting the ReTURN
key selecis the menu function chosen by the selection box. Alternately, a menu
item can be selected by striking the key indicated in parenthesis for each command
(e.g., key F immediately executes the (F) ilters command),

An e (x}it from the current menu to its parent (i.e., the previous menu) can be
achieved either by placing the box on the e (x) it item and striking the RETURN
key, by hitting the x key, or by simply hitting the Esc key. In fact the EsC key is
used throughout SCOPE to exit from the current action, and the RETURN key is used
to execute a selected function,

uw !9!!':0”.!!’ !!’.‘I.

MAIN

FA9 05—
raal{T) inea

(L) imits
(Activa Ch
(Cropu

scr{0>11
{Y) Sans
{M)sasura
stat(s
(Fliltars
{Plwr Spact

(H)alp {Fi)
alXrit

e e e e e e e = e e e (]
Raad from or write data tao disk

Figure D.1 UW DigiScope's main display screen. The dashed box indicates the active channel.
In this case, the ECG in the top channel was read from a disk file, then a derivative algorithm
was applied to processed the ECG and produce the waveform in the bottom (active) channel,

D.1.2 Communicating with SCOPE

Sometimes it is necessary for the user to enter data via the keyboard. Such data en-
try is done in the command line window at the bottom of the screen. Entry of data
either ends with a RETURN, upon which the data are accepted, or an Esc which
allows the user to quit data entry and make an escape back to the previous screen.
Correction can be done with the BACKSPACE key prior to hitting RETURN. SCOPE also
provides information to the user via short text displays in this window.
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D.2 OVERVIEW OF FUNCTIONS

Figure D.2 shows how main menu functions branch to other menus. Command
£(I) le permits reading or writing disk data files. Function real (T)ime lets you
select the source of sampled data to be either from a disk file or, if the computer
has the proper hardware installed, from an external Motorola 68HC11 microcon-
troller card or an internal Real Time Devices signal conversion card.

Function (L)imits lets you choose whether scorE functions operate on the
whole file or just the portion of the file that is displayed. The default limits at start-
up are the 512 data points from the file seen on the display. The maximal file size
is 5,120 sampled data points. When you write a file to disk using the £{I)1le
(W) rite command, you are asked if you want to write only the data on the display
(512 points) or the whole file. With the scr(0) 11 function, you can scroll through
a file using the arrow keys and select which of the file’s 512 data points appear on
the display. {(c)opy performs a copy of one display channel to the other.

File Ops
iwad ] ~———p SELECT
(W)rite
al})it
ece223.dat
ups.dat
CHANGE DIR
AT Read CHANGE EXT
{E)xt card
{1)nt card
(KLt
MAIN
cory
S49 0B T E—

real(T) ine Eﬁﬂ:ﬂq.:l
(L)inits copy (Dlown

{Adctiva Ch

{Conu

ser{0>11

{Y) Sans

{(M)assura

stat(Ws e ________p» STATUS REPORT: Channal 2

(F)ilters
(PY)wr Spnect FILE: E:\DIQSCOPENSTDLIB\mcalD5.dat
{3)enwavea TITLE: ECQ data from file ecglOS
ad{V) Ons SAMPLING RATE: 200
(H)elp (F1) TOTAL NUMBER OF DATA PNTS: 3000
a{X)it TIME DOMAIN data

RESOLUTION: 12 bits

Setup information
¥ Sensitivituy; -a
1.LIMITS MODE: ACTIUE SCREEN

Hit any key to continua. .

Figure D.2 Branches to submenus from the main menu.
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Figure D.3 Filter design menus.

To adjust the amplitude of the active channel, select (¥) Sens and increase or
Jecrease the sensitivity of the channel by a factor of two each time you strike the
1p or down arrow on the keyboard. This function operates like the sensitivity con-
1ol on an oscilloscope. (M) easure superimposes two cursors on the waveform in
he active channel that you can move with the arrow keys. At the bottom of the
lisplay, a window shows the time and amplitude values of the cursors.

Command stat (U) s provides a summary screen of information about the char-
cteristics of the current data display. This information is recorded in the header of
 data file when it is written to disk.

Function (P)wr Spect computes and displays the power spectrum of a signal. A
(H) alp function briefly explains each of the commands. Selecting to e (X} it from
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this main menu returns you to DOS. Choosing a (X) it on any submenu returns you
to the previously displayed menu.

Figure D.3 shows menus for performing filter design that branch from the
(F) 11ters command in the main menu. Any filter designed with these tools can
be saved in a disk file and used to process signals. Tools are provided for designing
the three filter classes, FIR, IIR, and integer-coefficient filters. (F) IR and (I)IR
each provide four design techniques, and I (N) teger fully supports development of
this special class of filter. The most recently designed filter is saved in memory so
that selecting (R)un £ilter executes the filter process on the waveform in the ac-
tive window. (L)oad filter loads and runs a previously designed filter that was
saved on disk.

Figure D.4 shows the filter design window for a two-pole IR filter. In this case,
we first selected bandpass filter from a submenu and specified the radius and angle
for placement of the poles. The scopg program then displayed the pole-zero plot,
response to a unit impulse, magnitude and phase responses, and the difference
equation for implementing the filter (not shown). By choosing e () it or by hitting
ESC, we can go back to the previous screen (see Figure D.3) and immediately exe-
cute (R)un f£ilter to see the effect of this filter on a signal.

Note that the magnitude response is adjusted to 0 dB, and the gain of the filter is
reported. High-gain filters or cascades of several filters (e.g., running the same fil-
ter more than once or a sequence of filters on the same signal data) may cause inte-
ger overflows of the signal data. These usually appear as discontinuities in the out-
put waveforms and are due to the fact that the internal representation of signal data
is 16-bit integers (i.e., values of approximately +32,000). Thus, for example, if you
have a 12-bit data file (i.e., values of approximately +2,000) and you pass these
data through a filter or cascade of filters with an overall gain of 40 dB (i.e, an
amplitude scaling by a factor of 100), you produce numbers in the range of
+200,000. This will cause an arithmetic overflow of the 16-bit representation and
will give an erroneous output waveform, To prevent this problem, run the special
all-pass filter called attend0.fil that does 40-dB attenuation before you pass the sig-
nal through a high-gain filter, The disadvantage of this operation is that signal bit-
resolution is sacrificed since the original signal data points will be divided by a
factor of 100 by this operation bringing a range of 2,000 to 20 and discarding
the least-significant bits,
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Figure D.4 UW DigiScope screen image.

Figure D.5 shows the set of special functions called from the main menu with the
advanced options selection ad(v) oOps. These advanced features are frequency
analysis, crosscorrelation, QRS detection, data compression, and sampling theory.

(F) req anal does power spectral analysis of a waveform segment (called a tem-
plate) selected by the use of two movable cursors. This utility illustrates the effects
of zero-padding and/or windowing of data. A template is selected with the cursors,
and zero-padded outside of the cursors. Any dc-bias is removed from the zero-
padded result. A window can be applied to the existing template. The window has
a value of unity at the center of the template and tapers to zero at the template
edges according to the chosen window. Function ra () tore recopies the original
buffer into the template.

{C)orrelation crosscorrelates a template selected from the top channel with a
signal. A template selected from the upper channel is crosscorrelated with the
signal on the upper channel, leaving the result in the lower channel. If you do not
read in a new file after selecting the template, then the template is crosscorrelated
with the file from which it came (an autocorrelation of sorts). After a template has
been selected, you can read in a new file to perform true crosscorrelation. The
output 1s centered around the selected template.

(Q) RS detect permits inspection of the time-varying internal filter outputs in
the QRS detection algorithm described in the book. This algorithm is designed for
signals sampled at 200 sps. QRS detection operates on the entire file. When it en-
counters the end of the data file, it resets the threshold and internal data registers of
tl}lle filters and starts over, so you may observe a “standing” wave if the data file is a
short one.



338 Biomedical Dighal Signal Processing

FFT

(TDanplata

(H) indow

(Plur Spect
(AMectiva ch
{¥) sens
[(Fesd file |
re{(S)tore

(M) aasura

MAIN scr(0)11
stat(Urs
In | {H)=lp (Fl)
raal(T) ina alHdit
(Bt
ctive
<{C>onu CORRELATION
53;(2311
(N> assura (UYiew Tanpl.
stat(U)s (Crorrelation
(F)iltars (Adctive Chan
(P)wr Spact (Y)sens
{3 anuave raad(F}ila

Thele crr N\ (Hrelp (F1)
alX)it alM>it
Ackv. Opts
QRS DETECTOR
EFirea snal |
(B)orr-latiuT___”,f/’/"E]zggna!! ]
(RS datact (8 andpass

c(O)mprass (Darivativa
(S)anple (IYntaarator
(R)daptlJ:W () rspulsa
a(Vyarage (Adctive ch
al(X)it L CY) mmns
(Rlaad file
($)croll
(M)aasure
s(Ddund
stat(Uds
(H)>alp (F1)
‘, alirit
SANPLE COMPRESS
{PYwr Spect (A)ztec
(R acreuate fa{N)
:e;ctiu: Chan. haCF) fran
il tPlur Spect
:ﬂ;:?::r- (Clopy data
(D)ata salect fi{l)le ops
(H)mlp statcu>s
alirit (H)alp CF1)
alX) it

Flgure D5 Advanced options menus.



UW DigiScope User's Manual 339

Function ¢ (0) mpress provides the option to do data compression of a waveform
using the turning point, AZTEC, Fan, and Huffman coding algorithms. The data
reduction techniques compute approximations to the data in the upper channel, The
algorithms operate only on the displayed data. The Turning Point algorithm re-
duces the number of data points by a factor of two, keeping critical points. The
FAN and AZTEC algorithms require a threshold, which determines a trade-off
between data reduction and distortion. The user is prompted to enter a value for the
threshold, preferably a fraction of the data range (which is displayed). Huffman
coding is a lossless algorithm that creates a lookup coding table based on fre-
quency of occurrence of data values. A lookup table must be computed by (M) ake
before the data can be compressed by (R)un. {R)un actually compresses then de-
compresses the data and displays the data reduction ratio. When making the table,
first differencing can be used, which generally reduces the range of the data and
improves data reduction. If the data range is too great when executing (M) ake , the
range of the lookup table will be truncated to 8 bits, and values outside this range
will be placed in the infrequent set and prefixed, so data reduction will be poor.
The best thing to do in this case is to attenuate the data to a lower range (with a fil-
ter like atten40.fil) and then repeat the process.

(8)ample facilitates study of the sampling process by providing the ability to
sample waveforms at different rates and reconstruct the waveforms using three dif-
ferent techniques. This module uses one of three waveforms which it generates in-
ternally, 50 you cannot use this module to subsample existing data. The data is
generated at 5,000 sps, and you may choose a sampling rate from 1 to 2,500 sps at
which to subsample. When you take the power spectrum of data that has been
sampled (but not reconstructed), the program creates a temporary buffer filled with
512 points of the original waveform sampied at the specified rate. In other words,
even though the displayed data is shown with the intersample spaces, the power
spectrum is not computed based on the displayed data (and the 5,000 sps rate) but
rather with the data that would have been created by sampling the analog wave-
form at the specified sample rate. The reason for this is to illustrate a frequency
domain representation based on the specified sampling rate, and not the more
complicated power spectrum that would result from computing the FFT of the ac-
tual displayed data.

Function (a)daptive demonstrates the basic principles of adaptive filtering, and
a (V) erage illustrates the technique of time epoch signal averaging.

Figure D.6 shows the GENWAVE function that provides a waveform generator.
Signals with controlled levels of ran(p)om and 60-1(2) noise can be synthesized
for testing filter designs. In addition to (S)ine, (T)riangle, and s (Q) uare waves,
ECGs and other repetitive template-based waveforms can be generated with the
t (E)mplate command. Figure D.7 shows two signals synthesized using this
function. Figure D.8 shows the nine different templates that are provided for
synthesizing normal and abnormal ECG signals. For more details about the
GENWAVE function, see Appendix E.
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GENHAVE PARANETERS
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Figure D.6 Waveform generation.

(a)

(b)

Figure D,7 Waveforms generated using (G)anwave. (a) Two-Hz sine wave with 20% random
noise. {b) ECG based on ECG WAVE 1 with 5% 60-Hz noise,
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Appendix E

Signal Generation

Thomas Y. Yen

In the process of designing digital filters and signal detection algorithms, it is im-
portant to have techniques for testing their performance. The testing process often
involves applying signals to the input of the filter or algorithm and observing the
resulting signal at the output. For biomedical applications, the use of physiological
signals like the ECG and EEG are often preferable to basic signals like sine, trian-
gle, and square waves. Physiological signals are not usually readily available
making testing of the filters and algorithms difficult. It is, however, possible to use
a computer and software to generate realistic physiological signals. This appendix
describes how standard signals and physiological signals are generated by the
GENWAVE function in UW DigiScope.

E.1 SIGNAL GENERATION METHODS

Two basic techniques for synthesizing signals are the model equation method and
the waveform template method. In the model equation method, a mathematical
model of the signal is used to calculate a sequence of values that make up the sig-
nal. This method of signal generation is very flexible, allowing signals of any fre-
quency and amplitude to be produced. However, accurately modeling a particular
signal such as the ECG can be difficult, If the signal is very complex, the model
may require a large set of equations and hence a large computation time. We use
the equation method in UW DigiScope for generating sine, square, and triangle
waves.

On the other hand, the use of waveform templates is a very simple, flexible, and
fast method of generating complex, repetitive signals. A waveform template is eas-
ily obtained by sampling one cycle of a signal with an analog-to-digital converter
and saving the sampled data points as a template. This method allows any type of
repetitive signal, regardless of complexity, to be reproduced. We used this template
approach for ECG signal simulation in UW DigiScope because of its straightfor-

342



Signa! Generation 343

ward implementation and because of the ability to synthesize new signals by sim-
ply adding templates.

E.2 SIGNAL GENERATOR PROGRAM (GENWAVE)

GENWAVE is the program module embedded within UW DigiScope that is called
with the (G)enwave command. It allows the creation of various types of signal
waveforms. The user can specify the number of cycles, sampling rate, waveform
repetition frequency, noise level, amplitude, and bit resolution. The different types
of signals available are determined by the waveform templates available. New
waveform templates can either be added to the default template file or saved in
separate template files. The following sections describe how to create template
files and how to use the GENWAVE program.

E.2.1 Creating template files

Two programs provided for the creation of templates are ASC2TPL.EXE and
TPL2ASC. EXE. ASC2TPL . EXE converts an ASCII file of the proper format into a bi-
nary template file. TPL2ASC . EXE converts a binary template file, such as the default
template file DEFAULT . TPL into an ASCII file so that it can be edited with an editor
or word processing program. The default template file that comes with DigiScope
includes nine ECG templates. New templates can be added to this file by first con-
verting the file into an ASCI file, then adding new template data to the end of the
file, and finally converting the ASCII file back to the binary default terplate for-
mat. In the conversion to binary, the ASC2TPL . EXE program automatically scales
the waveforms to a i2-bit range to obtain maximal resolution of the waveform.
Figure E.1 shows the structure of the ASCII template file format.

Waveform Name (80 characters max,)}

Waveform ID number (1-12 are reserved; max. number 50)
Number of Datapcints (32767 max.)

Sample Rate of Signal (in Hz.-32767 max.)

Data (1)

Data(2) {the first and the last datapoints
. must be the same baseline values)

Data (Number of Datapoints}
{Repeat above for each waveform template)

Figure E.1 ASCII template file format.
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To convert the default template file to an ASCII template file, enter the follo
ing syntax:
TPL2ASC DEFAULT.TPL <ASCII File Name>

where ASCII File NWama is the name by which the default template data is stor
The file name pEFauLT.TPL is the binary template file from which the wavefo
templates are read. An example of the format of this command is

TPL2ASC DEFAULT.TPL ASCTEMP.ASC

This command converts the binary template file DEFAULT. TPL into an AS(
template file called AscTEMP .asC. Both file names must be specified, and
different binary template file name other than DPEFAULT . TPL may be used.

To convert an ASCII template file to the binary default template file, fi
rename the current default template file, then type the following at the comma
prompt:

ASC2TPL <ASCII File Name> DEFAULT.TPL

where ASCII File Name is the file that is to be converted to the default templ:
file. The new DEFAULT . TPL file must then be placed in the DIGSCOPE\STDLIB (
rectory in order for DigiScope to use it. An example of the format of this comma

18
ASC2TPL ASCTEMP.ASC DEFAULT.TPL

converts the ASCII template file into the template file called pEFAULT . TPL, B¢
file names must be specified, and a different binary template file name other th
DEFAULT . TPL may be used.

A template file can have a maximum of 50 waveform templates. Each wavefos
must have a waveform ID. The ID numbers in a given file should start with o
and increase by one for each template in the file. The waveform name can be up
80 characters in length. To ensure amplitude-matching of the start and the end of
template, the first and Iast waveform values must be the same. Figure E.2 shows .
example of an ASCII template file.

E.2.2 Using the GENWAVE function

When the signal generator GENWAVE creates a waveform, several parameters a
attached. If the signal is saved as a file, these parameters are placed in the fi
header (defaults are in brackets).

Output filename (8 characters with 3 letter extension) [WAVEFORM. OUT]
Input filename (8 characters with 3 letter extension) {DEFAULT . TPL]
Output sampling rate in sps (10,000 max.) [500]

Output waveform frequency in cycles per minute (10,000 max.) [60)
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5. Number of data points (5,000 max.) {512]
6. Noise: % of full scale (0 to £100) [0]
(a) Random noise
(b) 60 Hz noise
7. Waveform ID (1 to 50) [1]
8. Full-scale resolution in bits (3—12 max.) [§]

GENWAVE is always able to produce sine, triangle, and square wave signals be-
cause they are built into the program even if the pEFAULT. TPL file is not found.
Since GENWAVE always reads this file if it is present, should you wish to create a
new default file, save the old pEFAULT. TPL file by another name and rename your
new file DEFAULT . TPL.

Normal ECG (Waveform Name)
4 (Waveform ID)
157 {Number of Datapoints)
360 {Samplerate}

0 {Datal)

0 {DataZz)

0 {Datal)

624 (Data4)

1560 (Datas)

920 (Datalss)

25 (Datalse6)

0 (Datal57 Last)
PVC {Waveform Name)
5 fWaveform ID)
83 {Number of Datapoints)
360 {(Samplerate)

0] (Datal)

1] (Dataz)

43 (Data3)

324 {Datad)

260 (Datab)

320 (Datal)

35 {Data82)

0 {DataB3 Last)

Figure E.2 Example of an ASCII template file,




Appendix F

Finite-Length Register Effects

Steven Tang

Digital filter designs are either implemented using specific-purpose hardware or
‘general-purpose computers such as a PC. Both approaches involve the use of finite-
length data registers (FLR) which can represent only a limited number of values. In
Chapter 3, we discussed the process of analog-to-digital conversion and some of
the quantization effects due to the finite number of representable magnitudes. This
is one of several problems dealing with FLR effects that we must consider when
designing our own digital filter on a signal processor or microprocessor. This ap-
pendix discusses overflow characteristics, roundoff noise, limit cycles, scaling and
I/O variations due to fixed-point registers. We also compare the functional advan-
tages of floating-point and fixed-point registers.

F.1 QUANTIZATION NOISE

Fixed-point registers, when used in digital filters, store a finite number of repre-
sentable integer numbers. There are two consequences of this type of representa-
tion: (1) the state variables that make up the filter can only represent an integral
multiple of the smallest quantum, and (2) there is a maximal value that the register
can represent in a one-to-one correspondence. The first effect is known as quanti-
zation, the second, as overflow (Oppenheim and Schafer, 1975; Roberts and
Mullis, 1987).

Quantization errors can occur in a fixed-point register whenever there is a multi-
ply and accumulate function. For example, if we are trying to implement an FIR
filter, the output would be the sum of weighted tapped inputs. The final summation.
is representable only to the precision of the smallest value. The smallest quantum
that we can represent with a register of bit-length B+1 is

g=0a2-B (F.1)
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This value g is frequently called the quantization step size. We can arbitrarily de-
fine g by choosing the value of A, If we are trying to design an integer filter, the
value of A is 28, and ¢ = 1. The advantage of choosing a large A is that we can ex-
pand the domain of representable values. However, we consequently lose precision
since we also increase the quantization step size. Figure F.1 shows the quantizer
characteristics for the rounding of a three-bit register.

Rn = Qxin)]
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Figure F.1 2’s compiement rounding quantization effect for 3-bit register.

The error between the real number x(n) and its finite binary representation is
e =x(n) — Qlx(n)] (F.2)

This is known as the quantization error due to FLR. This presumably also occurs
during data acquisition with any A/D converter. However, A/D quantization is a
hardware problem; FLR quantization is due to software restrictions.

F.1.1 Rounding

One method of implementing a quantizer is to round off the true value to the near-
est representable quantum level. The quantization error is then bounded by ¢/2 and
—q/2. Thus, quantization is functionally equivalent to adding some random noise in
the range —q/2 < o < /2 to the original real number. We can think of this noise as
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being randomly generated and having the probably density function (PDF) shown
in Figure F.2.

ilq

2 0 g2

Figure F.2 The probability density function of quantization error for rounding.

Theoretical studies and numerical simulations have shown that this model is ac-
curate for inputs with a relatively broad frequency spectrum and wide PDF, so that
the input does not remain between the same quantization levels for a long duration.
We can thus calculate a theoretical value for noise power associated with each
quantized multiply and accurmulate function.

4i2
2 2
6,2 = Ele(k)?] = f O‘?aroz -4 (F.3)
32

F.1.2 Truncation

The other method of quantizing is to simply truncate the value, or reduce it until
we find a representable level. This has a similar effect to rounding except that the
probability density function of such quantization error has a shifted mean. The
noise range has limits of —¢ and 0, While there is no inherent advantage to using
either rounding or truncation, rounding is preferred because of its zero mean. For
theoretical calculations, this is a much easier method to use since the noise power
is simply the variance of the noise.

F.2 LIMIT CYCLES

If a digital filter amplifies the input, there will be internal gain among the state
variables. If the accumulated value at a register is beyond the highest binary repre-
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sentation available, an overflow characteristic must be implemented. Figure F.3
shows several different ways of describing a function for the values outside the
representable range. Saturation overflow acts as a strict output limiter. Two’s
complement overflow has the characteristic of a wraparound effect. Zero after
overflow simply suppresses the output to zero.
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Figure F.3 Overflow characteristics. {(a) Saturation, (b) Two's complement, {(c) Zero after
overflow,

In each case, there are competing advantages that offer a compromise between
total roundoff error and the likelihood of continual overflow. Saturation overflow
provides the closest output to the actual value (shown by the dotted line). However,
by maintaining the output at the largest quantized level, there is greater potential
for another overflow after the next filter iteration. The two’s-complement overflow
scheme is a natural characteristic of two’s complement representation; the largest
positive representable value is one bit smaller than the most negative value avail-
able. While two’s-complement creates greater roundoff error, there is equal proba-
bility that the output will fall anywhere within the representable quantization range.
The zero after overflow is a compromise between the saturation and two’s-com-
plement characteristics.

F.2.1 Overflow oscillations

From the different types of overflow characteristics, we see that the possibility of
repeated overflows can happen in all three cases. When overflows occur continu-
ally, and the output does not converge to zero after an initial nonzero input, there
exists an overflow oscillation. The implication of an overflow oscillation is that the
output is no longer dependent on the input.

Figure F.4 shows a second-order filter example of jumping from an allowable
state space to an overﬂowed state, applying two’s-complement overﬂow and f1-
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space equations by setting the input to be zero. We can represent any filter by the
equations

x(k.+ 1) = Ax(k) + Bu(k) {F.4)
y(k) = Cx(k} + Du(k) (F.5)

Thus, the A is the matrix that maps the current state variable vector, x(k), to the
next, x(k + 1). If the eigenvalues of A [i.e., the poles of H(z)] are greater than unity,
the filter is unstable and overflow will occur. There are particular regions in the
state space for which x(k + 1) will continually be mapped out of range for zero in-
put. These are the areas for which overflow oscillations occur. Having 2 nonzero
input can sometimes change the characteristics of the mapping function so that it
jumps out of this cycle. However, the input is usually not very large in comparison
to the total range of the state space.
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Figure F.4 State space description of second-order digital filter showing overflow and roundoff.

F.2.2 Deadband effect

Overflow is not the only type of limit cycle that can occur from FLR effects.
Recursive IIR filters with constant input can produce steady-state output after
quantization when they should actually continually decay. This problem is a result
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of roundoff errors that cause the state variable vector to get stuck in the same state
space. Thus, there is essentially a deadband where constant input prevents a linear
1/0 mapping of the filter characteristics. This is not as hazardous as overflow oscil-
lation in the amount of roundoff error that occurs, but it still is problematic in giv-
ing an erroneous output response.

Here is a first order example of such a filter. Let

y(nT) = -0.96y(nT ~ T} + x(nT) forx()=13 and x(nT) =0 forn>0
Clearly, without quantization, the output should eventually decay to zero.

However, if we assume rounding to the nearest integer at the output, we will have
the following I/O characteristics.

n | y(nT) =-0.96{y(nT - Dip b(nDlo
0 13 13
1 —12.48 =12
2 11.52 - 12
3 —11.52 ~12
4 11.52 ' 12

Such a filter is said to have a limit cycle period of two. A filter with limit cycle
of periodicity one would have a state vector that remains inside the same grid loca-
tion continuously.

One solution to deadband effects is to add small amounts of white noise to the
state vector x(nT). However, this also means that the true steady state of a filter re-
sponse will never be achieved. Another method is to use magnitude truncation in-
stead of rounding. The problem here, as well, is that truncation may introduce new
deadbands while eliminating the old ones.

F.3 SCALING

There are several ways to avoid the disastrous effect of limit cycles. One is to in-
crease A so that the state space grid covers a greater domain. However, this also in-
creases the quantization noise power. The most usual cause of limit cycles are fil-
ters that have too much gain. Scaling is a method by which we can reduce the
chances of overflow, still maintain the same filter transfer function, and not com-
promise in limiting quantization noise. '

Figure F.5 shows how to scale a node v so that it does not overflow, By dividing
the transfer function F(z) from the input  to the node by some constant f3, we scale
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the node and reduce the probability of overflow. To maintain the /O characteristics
of the overall filter, we must then add a gain of 8 to the subsequent transfer func-
tion G(z).

D(2)

u O o O e
Fl2)p BG(2)

Figure F.5 State variable description of scale node variable v".
There are two different scaling rules called /1 and /2 scaling. The first rule corre-

sponds to bounding the absolute value of the input. The second rule maintains a
bounded energy input. The two rules are

B =il = lio 101 (F.6)
p=38flp = 6[1;-30 1‘2(1)]”2 F7

The parameter & can be chosen arbitrarily to meet the desired requirements of the
filter. It can be regarded as the number of standard deviations representable in the
node v’ if the input is zero mean and unit variance. A dof five would be considered
very conservative.

F.4 ROUNDOFF NOISE IN IIR FILTERS

Both roundoff errors and quantization errors get carried along in the state variables
of IIR filters. The accumulated effect at the output is called the roundoff noise. We
can theoretically estimate this total effect by modeling each roundoff error as an
additive white noise source of variance ¢2/12.
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If the unit-pulse response sequence from node i to the output is g;, and if quanti-
zation is performed after the accumulation of products in a double length accumu-
lator, the total output roundoff noise is estimated as

2 ( n
o= {.21 g2 + 1} (F.8)
1=

The summation in this equation is sometimes called the noise gain of the filter.
Choosing different forms of filter construction can improve noise gain by as much
as two orders of magnitude. Direct form filters tend to give higher noise gains than
minimum noise filters that use appropriate scaling and changes to g;j to reduce the
amount of roundoff noise.

.5 FLOATING-POINT REGISTER FILTERS

Floating-point registers are limited in their number of representable states, although
they offer a wider domain because of the exponential capabilities. The state space
grid no longer looks uniform but has a dependency on the distance between the
state vector and the origin. Figure F.6 demonstrates the wider margins between al-
lowable states for numbers utilizing the exponent range.

Figure F.6 State space grid for floating-point register,

Floating point differs from fixed point in two ways: (1) there is quantization er-
ror present during addition, and (2) the output roundoff noise variance is
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proportional to the size of the number in the state variable. Although floating point
greatly expands the domain of a filter input, the accumulated roundoff errors due to
quantization are considerably greater than for fixed-point registers. :

F.6 SUMMARY

In many real-time applications, digital signal processing requires the use of FLRs.
We have summarized the types of effects and errors that arise as a result of using
FLRs, These effects depend on the type of rounding and overflow characteristics of
a register, whether or not it is fixed or floating point, and if there is scaling of the
internal nodes. _
Figure F.7 compares the total error for a filter with variable scaling levels. For
no scaling, we expect to have greater probability of overflow, unless the input is
well bounded. As we increase the scaling factor &, overflow is less prevalent, but
the roundoff error from quantization begins to increase because the dynamic range
of the node register is decreased. To minimize total error output, we must fmd a
compromise that decreases both errors. : -
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Figure F.7 Comparison of overflow and roundoff error in total error output.
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F.7 LAB: FINITE-LENGTH REGISTER EFFECTS IN DIGITAL FILTERS

Write a subroutine that quantizes using the rounding feature and a subroutine that
simulates 2's-complement overflow characteristics for an 8-bit integer register. Try
implementing a high-pass IIR filter with the transfer function

1
H@) =105,7T5 2

Using a sinusoidal input, find the amplitude at which the filter begins to over-
flow. Examine the output of the filter for such an input. Does the overflow charac-
terize a 2’s-complement response?
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Appendix G

Commercial DSP Systems

Annie Foong

A wide variety of commercial data acquisition hardware and software is currently
available in the market. Most comes in the form of full-fledged data acquisition
systems that support various hardware cards in addition to data analysis and dis-
play capabilities. Basically a complete data acquisition system consists of three
modules: acquisition, analysis, and presentation.

G.1 DATA ACQUISITION SYSTEMS

G.1.1 Acquisition

Four common ways of acquiring data use (1) an RS§-232 serial interface, (2) the
IEEE 488 (GPIB) parallel instrumentation interface, (3) the VXI bus, or (4) a PC-
bus plug-in data acquisition card.

RS-232 interface

This approach consists of a serial communication protocol for simple instruments
such as digital thermometers, panel meters, and data loggers. They are useful for
controlling remote data acquisition systems from long distances at data rates lower
than 1 kbyte/s. Since the RS-232 interface comes standard on most computers, no
extra hardware is necessary.

IEEE 488 (GPIB) interface

Many sophisticated laboratory and industrial instruments, such as data loggers and
digital oscilloscopes, are equlpped with GPIB interfaces. Devices communicate
through cables uptoa maximum length of 20 meters using an 8-bit parallel proto-
col with a'maximum data transfer rate of two Mbyte/s. This interface supports both
control and data acquisition. IEEE 488 uses an ASCII command set (Baran, 1991).

356
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VXI bus

This bus is a high-performance instrument-on-a-card architecture for sophisticated
instruments. Introduced in 1987, this architecture has been driven by the need for
physical size reduction of rack-and-stack instrumentation systems, tighter timing
and synchronization between multiple instruments, and faster transfer rates. This
standard is capable of high transfer speeds exceeding 10 Mbyte/s.

Plug-in data acquisition boards

Data acquisition boards plug directly into a specific computer type, such as the PC
or the Macintosh. This method combines low cost with moderate performance.
These boards usually support a wide variety of functions including A/D conver-
sion, D/A conversion, digital 1/O, and timer operations. They come in 8-16 bit
resolution with sampling rates of up to about 1 MHz. They offer flexibility and are
ideal for general-purpose data acquisition,

G.1.2 Analysis and presentation

Data analysis transforms raw data into useful information. This book is principally
about data analysis. Most software packages provide such routines as digital signal
processing, statistical analysis, and curve fitting operations.

Data presentation provides data to the user in an intuitive and meaningful format.
In addition to presenting data using graphics, presentation also includes recording
data on strip charts and generation of meaningful reports on a wide range of print-
ers and plotters. :

G.2 DSP SOFTWARE

The trend is toward using commercial DSP software that provides the entire
process of data acquisition, analysis, and presentation. Here we discuss commer-
cially available software for general plug-in PC data acquisition boards. Because of
the flexibility of such a scheme of data acquisition, there is a huge market and
many suppliers for such software. In addition, many vendors offer complete train-
ing programs for their software.

Software capabilities vary with vendors’ emphasis and pricing. Some companies,
for example, sell their software in modules, and the user can opt to buy whatever is
needed.
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Some common capabilities of commercial DSP software include the following:

Support of a wide variety of signal conversion boards.

Comprehensive library of DSP algorithms including FFT, convolution,
low-pass, high-pass, and bandpass filters.

Data archiving abilities. The more sophisticated software allows exporting
data to Lotus 123, dBase, and other common analysis programs.

Wide range of sampling rates.

Impressive graphics displays and menu and/or icon driven user interface.
User-programmable routines.

Support of high-level programming in C, BASIC, or ASCII commands.
Customizable report generation and graphing (e.g., color control, automatic
or manual scaling).

PNOUME W N

A few interesting software packages are highlighted here to give the reader a fla-
vor of what commercial DSP software offers.

SPD by Tektronix is a software package designed for Tektronix digitizers and
digital oscilloscopes and the PEP series of system controllers or PC controllers. It
offers in its toolset over 200 functions including integration and differentiation,
pulse measurements, statistics, windowing, convolution and correlation, forward
and inverse FFTs for arbitrary length arrays, sine wave components of an arbitrary
waveform, interpolation and decimation, standard waveform generation (sine,
square, sinc, random), and FIR filter generation.

DADISP by DSP Development Corporation offers a version that operates in the
protected mode of Intel 80286 or 80386 microprocessors, giving access to a full 16
Mbytes of addressability. Of interest is the metaphor that DADiSP uses. It is
viewed as an interactive graphics spreadsheet. The spreadsheet is for waveforms,
signals, or graphs instead of single numbers. Each cell is represented by a window
containing entire waveforms. For example, if window 1 (W1) contains a signal,
and W2 contains the forrnula DIFF(W1) (differentiate with respect to time), the
differentiated signal will then be displayed in W2, If the signal in W1 changes,
DADISP automatically recalculates the derivative and display- it in W2, It also
takes care of assigning and managing units of measurement. In uie given example,
if W1 is a voltage measurernent, W1 will be rendered in volts, and W2 in volts per
second. As many as 100 windows are allowed with zoom, scroll, and cursoring
abilities. The number of data points in any series is limited only by disk space, as
DADISP automatically pages data between disk and memory.,

DspHq by Bitware Research Systems is a simple, down-to-earth package that
includes interfaces to popular libraries such as MathPak87 and Numerical Recipes.

MathCAD by MATHSoft, Inc. is a general software tool for numerical analysis.
Although not exactly a DSP package, its application packs in electrical engineering
and advanced math offer the ability to design IIR filters, perform convolution and
correlation of sequences, the DFT in two dimensions, and other digital filtering.
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A more powerful software package, MatLAB by Math Works, Inc., is also a nu-
merical package, with an add-on Signal Processing Toolbox package having a rich
collection of functions immediately useful for signal processing. The Toolbox’s
features include the ability to analyze and implement filters using both direct and
FFT-based frequency domain techniques. Its IIR filter design module allows the
user to convert classic analog Butterworth, Chebyshev, and elliptic filters to their
digital equivalents. It also gives the ability to design directly in the digital domain.
In particular, a function called yulewalk() allows a filter to be designed to match
any arbitrarily shaped, multiband, frequency response. Other Toolbox functions
include FIR filter design, FFT processing, power spectrum analysis, correlation
function estimates and 2D convolution, FFT, and crosscorrelation. A version of
this product limited to 32 x 32 matrix sizes can be obtained inexpensively for ei-
ther the PC or Macintosh as part of a book-disk package (Student Edition of
MatLAB, Prentice Hall, 1992, about $50.00).

ASYST by Asyst Software Technologies supports A/D and D/A conversion,
digital 1/0, and RS-232 and GPIB instrument interfacing with a single package.
Commands are hardware independent. It is multitasking and allows real-time stor-
age to disk, making it useful for acquiring large amounts of data at high speeds.

The OMEGA SWD-RTM is a real-time multitasking system that allows up to 16
independent timers and disk files. This is probably more useful in a control en-
vironment that requires stringent timing and real-time capabilities than for DSP
applications.

L.abWindows and LabVIEW are offered by National Instruments for the PC and
Macintosh, respectively. LabWindows provides many features similar to those
mentioned earlier, However, of particular interest is LabVIEW, a visual program-
ming language, which uses the concept of a virtual instrument. A virtual instrument
is a software function packaged graphically to have the look and feel of a physical
instrument. The screen looks like the front panel of an instrument with knobs,
slides, and switches. LabVIEW provides a library of controls and indicators for
users to create and customize the look of the front panel. LabVIEW programs are
composed of sets of graphical functional blocks with interconnecting wiring. Both
the virtual instrument interface and block diagram programming atternpt to shield
engineers and scientists from the syntactical details of conventional computer
software. '

G.3 VENDORS

Real Time Devices, Inc.
State College, PA
(814) 234-8087
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BitWare Research Systems
Inner Harbor Center, 8th Floor, 400 East Pratt Street,
Baltimore, MD 21202-3128
(800) 848-0436

Asyst Software Technologies
' 100 Corporate Woods, Rochester, NY 14623
(800) 348-0033

National Instruments
6504 Bridge Point Parkway, Austin, TX 78730-5039
(800) IEEE-488

Omega Technologies
One Omcega Drive, Box 4047, Stamford, CT 06907
(800) 826-6342

DSP Development Corporation
One Kendali Square, Cambridge, MA 02139
(617) 577-1133

Tektronix
P.O. Box 500, Beaverton, OR 97077
(800) 835-9433

MathSoft, Inc.
201 Broadway Cambridge, MA 02139
(800) MathCAD

The MathWorks, Inc,
21 Eliot St, South Natick, MA 01760
(508) 653-1415
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disk operating system 16
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clinical 24
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decision logic 268
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schematic diagram 48
arrhythmia analysis 277
clinical 24
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forward problem 29
Holter recording 236
inverse problem 30
late potential 43, 187
lead coefficients (see lead)
lead system (see lead system)
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QRS detector 236, 246, 277
adaptive threshold 260
amplitude threshold 247
automata theory 244
bandpass filter 238
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first and second derivatives 241
schematic diagram 49 -
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ternplate matching 243
UW DigiScope function 337
recording bandwidth 43, 187
rhythm analysis 42
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ECG 25
nonpolarizable 27
offset potential 25
polarizable 25
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electrolyte 25
clectromyogram 43
electrosurgery 216
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fast Fourier transform (see FFT) 102
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differentiator 46
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notch 46
QRS detector 47
schematic diagrams 45
cascade 141, 161, 166
definition 105
comb 102, 189
digital (see also C-language program)
adaptive 174
advantages 78
all-pass 91, 159
amplitude response 94
band-reject 111, 138, 161, 175
bandpass 92, 138, 160, 167, 238,
246, 247
C-language program 239
integer 239
bilinear transform 141
derivative 111, 241, 246, 253, 271
C-language program 254
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two-point difference 114
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finite impulse response (see FIR
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parabolic 109
phase response 97
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second derivative 116
smoothing 133
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transform table design 142
transversal 176
two-pole 137, 238
window design 117
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firmware 19
floppy disk 9
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Forth 21
FORTRAN 20, 265
Fourier transform (see also FFT), 189
inverse discrete-time 117
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graphical uscr interface 10
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hardware interrupt structure 19
health care 4
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real-time 280
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scanning 274
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home monitoring 272
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human-to-machine interface 19
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IBM PC9, 295, 317, 319, 325
IBM PC/AT 9, 295
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IDTFT (see Fourier transform, inverse
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IR filter 125, 352
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design of 136
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infusion pump 4
insensate feet 14
integrator (see filter, digital)
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microprocessor 5
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LabVIEW 21, 359
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Laplace transform 80, 130
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coefficients 30
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limb 32
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lead system
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Least Mean Squared algorithm 175
Lempel-Ziv-Welch algorithm 209
limit cycle 102, 351
LINC?7
LINC-8 8
linear phase response 119
Lisa 17
LMS algorithm (see Least Mean Squared
algorithm)
local area network 1, 19
Lomws 123 358
LZW algorithm 209

M

MAC time 285
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NEXT computer 19
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offset potential 25
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